
COMP 431 - Problem Set 6

Joe Puccio

April 16, 2015

Collaborators: Fred Landis, Max Daum, Spencer Byers.

1.

No, this additive-increase additive-decrease algorithm does not retain the property that a set of two con-
nections sharing a link would receive equal shares of the link’s capacity. Because both connections are
subtracting the same constant amount when a loss occurs, they will maintain the same sharing proportion
as when they started, and so in most instances the algorithm will not result in equal sharing of link capac-
ity. However, this additive-increase additive-decrease algorithm does result in equal sharing when the initial
rates are equally proportioned, because the connection usage will only vary along the line of equally sharing
proportions.

2.

The latency of slow start TCP (that is, the dynamic congestion windows) given T links would be given
by:

2RTT +
O

R
+ (T − 1)

S

R
+ P (T

S

R
+ RTT)− (2P − 1)

S

R

We must add a (T −1) S
R term because the entire object’s transmission delay will increase by this much when

you have T − 1 routers between the end systems, and then we must multiply the P S
R term by T because

the time to return the ACK for the first segments in each window will increase by a factor of the number of
links.

3.

Assumptions and explanation for (a) and (b): Assuming TCP with slow-start and that we have no packet
loss. Also assuming the HTTP GET requests are sent with the last ACK in the TCP 3-way handshake.
Also assuming, for slight simplification, that the image references are sent in the first packet of the base
page and therefore the requests for the 10 embedded images can be sent with the ACK for the first packet
in the base page (we claim this is reasonable because often resources are linked to at the top of HTML
documents). Finally, assuming that payloads can be variable length, and therefore smaller packets must be
sent if the data is not exactly divisible by the MSS. Stepping through the problem logically, for keep-alive
HTTP requests (that is, persistent TCP connections), we see that we must first incur a 2RTT delay, which
is due to the TCP 3-way handshake, plus the ACK for the first packet of the base page, and this first packet
adds an additional S

R transmission delay. Throughout the rest of the transmission for the base page, our
window size will increase (by slow start) and transmit 9 full packets and part of a 10th (due to the MSS
and base page size). Because we assumed that the requests for the images went out with the ACK for the
first packet of the base page, the server will immediately begin transmitting the images in the window of

1

size 8, once the last packet of the base page has been transmitted (the window of sizes 1,2,4 have taken care
of the majority of the base page). This process continues for the remaining images, with the window size
doubling unbounded (because we assume no loss, and therefore there is no threshold to consider) until all
images have been transmitted. We must take note of the fact of stalling delays due to the ACK of the first
packet arriving after the window has been fully transmitted. With all this taken into account, we arrive at:

a)

Rate Persistent (s) Non-persistent (s)
28000b/s: 15.861142857142859 19.014285714285712
105b/s: 4.7572799999999997 8.8017599999999998
106b/s: 1.0514239999999999 6.788672
107b/s: 0.90300159999999996 6.6188672000000004

b)

Rate Persistent (s) Non-persistent (s)
28000b/s: 20.745142857142856 72.738285714285709
105b/s: 10.514240000000001 67.886719999999997
106b/s: 9.0300159999999998 66.188671999999997
107b/s: 9.0030015999999993 66.018867199999988

Note that this approach takes into account variable size packets, and will differ from a solution that only
considers fixed size packets.

c)

We are tasked with explaining the total response time of a web page with M embedded objects of size
O with transmission rate R and a client capable of x parallel connections. Well, we know that the basepage
is going to take O

R time to transmit, and, because all of these objects are being sent over the same link,

we will not be able to overlap transmission and thus the M embedded objects will take an additional M O
R

time to transmit (thus, we know there must be an O
R + M O

R or (M + 1)O
R term. Next, we know that we

must have 2RTT for the 3-way TCP handshake and the propagation of the GET response for the basepage,
moreover because the HTTP requests are not keep-alive (that is, not the TCP connection is non-persistent),
we know that each object is going to also incur a 2RTT delay, however because the client may make up
to x simultaneous connections, this 2RTT delay for every object is cut down by a factor of x (because x
handshakes can be done in parallel), so thus 2M

x RTTs are incurred for the embedded objects (the basepage
cannot be done in parallel with other connections because in order for the other connections to start, the
basepage must be fully downloaded). Thus, we know that the response time must include a 2RTT +2M

x RTT

term which can be rewritten as 2(M
x + 1)RTT . Lastly, we know that there are additional delays due to bit

stream stalling during, for instance, slow start, and so there is an added and independent stalling, which
we’ll call SSL. Putting these together, we achieve:

(M + 1)
O

R
+ 2(

M

x
+ 1)RTT + SSL

4.

Our estimated RTT given the 4 sample RTT’s is

EstimatedRTT = (1− x)3sampleRTT4 + x(1− x)2sampleRTT3 + x(1− x)sampleRTT2 + xsampleRTT1

which, given x = .1, is

EstimatedRTT = (.729)sampleRTT4 + (.081)sampleRTT3 + (.09)sampleRTT2 + (.1)sampleRTT1

2

We can generalize this for any n samples to achieve:

EstimatedRTT = x0(1−x)n−1sampleRTTn+x(1−x)n−2sampleRTTn−1+...+x(1−x)sampleRTT2+x(1−x)0

which we can compact to be

EstimatedRTT = (1− x)n−1sampleRTTn + x

n−2∑
i=1

(1− x)iSampleRTTi+1

which can be rewritten as

EstimatedRTT = (1− x)n−1sampleRTTn + x

n−1∑
i=1

(1− x)i−1SampleRTTi

We can see why this formula is in the class of exponential moving average equations because, in the
limit as n → ∞, the oldest sample terms’ weight dies off exponentially (with each additional term, their
coefficients get a (1− x) factor smaller), while the newer terms have significantly smaller exponents on their
subzero coefficients (therefore, they are more heavily represented in the sum than the old terms).

5.

a) k = MIN(i : 30 + 31 + 32 + ... + 3i−1 ≥ O
S) = MIN(i : 1

2 (3i − 1) ≥ O
S) = MIN(i : i ≥ log3(2O

S + 1))

so k = log3(2O
S + 1)

b) q = MAX(i : RTT + S
R ≥ 3i−1 S

R) = MAX(i : 3i−1 ≤ 1 + RTT
S
R

) = MAX(i : i ≤ log3(1 + RTT
S
R

) + 1)

so q = log3(1 + RTT
S
R

) + 1)

c) Assuming the TCP implementation is using slow start, then our latency is going to be

2RTT +
O

R
+ P (

S

R
+ RTT)− (3P − 1)

S

R

3

